Category: Prediction and Prevention of Cardiovascular Disease


Stella A. Bialous, DrPH, FAAN

Research Interests:

Tobacco control, health policy, nursing, public health, capacity building, smoking cessation, cancer, non-communicable diseases, tobacco industry, global health, health diplomacy, sustainable development goals.

Summary:

Dr. Stella Bialous’ research focuses on the WHO Framework Convention on Tobacco Control, tobacco industry monitoring and building nurses’ capacity for tobacco control nationally and internationally. Dr. Bialous has consulted with the World Health Organization’s Tobacco Free Initiative for over 15 years. In 2003, she received the American Legacy Foundation’s Sybill G. Jacobson Adult Award for Outstanding Use of Tobacco Industry Document. In 2012, she received the International Society of Nurses in Cancer Care Distinguished Merit Award and is currently the Society’s President.

UCSF Profiles Page


Arthur Weiss, M.D., Ph.D.

Weiss

Research Interests:
Cell Surface Molecules and Molecular Events Involved in Lymphocyte Activation

Summary:
Dr. Weiss studies on how the functions of cells of the immune system are regulated. The immune system protects individuals from infections and malignancies. However, it is also involved in undesirable destructive responses, such as in autoimmune and allergic diseases as well as atherosclerosis and transplant rejection.

UCSF Profiles Page


Nelson B Schiller, M.D.

Schiller

Research Interests:
Dr. Schiller specializes in the use of echocardiography in the diagnosis and treatment of heart disease. His research interests center around the quantitation of left ventricular function by quantitative two-dimensional echocardiography and Doppler.

Summary:
Measuring the heart has been a preoccupation of civilizations since ancient Egypt. Measuring the heart using noninvasive techniques that are free of ionizing radiation has riveted the attention of modern medicine because knowledge of the size of the heart’s anatomic parts provides powerful diagnostic and therapeutic information. Dr. Nelson B. Schiller a member of the Department of Medicine, Cardiology Division, CVRI and John J. Sampson-Lucie Stern Endowed Chair in Cardiology, has spent his career investigating the application of echocardiography to the precise measurement and clinical application of the volume, weight and hemodynamics of the chambers and valves of the heart. His work is currently centered on the Heart and Soul Study (Mary Whooley, MD PI), where echocardiography measurements are being related to outcomes of heart disease.

UCSF Profiles Page


Jeffrey E Olgin, M.D.

Olgin

Research Interests:
Cardiac Electrophysiology, Arrhythmias, Mechanisms, Remodeling, Cardiac Fibrosis, Atrial Fibrillation, Cardiac Ablation, Mouse models, animal models, mouse electrophysiology, optical mapping, atrial fibrillation ablation, clinical trials.

Summary:

Mechanisms of arrhythmias, remodeling and cardiac fibrosis, atrial fibrillation, ventricular fibrillation, sudden death, prediction of atrial fibrillation, prediction of sudden death.
Dr. Olgin’s basic research lab is interested in atrial and ventricular remodeling and how these processes occur to develop a substrate for atrial fibrillation and ventricular tachycardia. His work has demonstrated the circuit for human atrial flutter and has demonstrated the importance of atrial fibrosis as a cause for atrial fibrillation. He is currently interested in how TGFß signaling is regulated in the atria to produce atrial fibrosis and atrial fibrillation. His lab is translational in that he utilizes a spectrum of techniques and studies that span from mouse, large animal physiologic models, human tissue, human biomarkers and genetic approaches to understanding the disease. He also has active studies in understanding the remodeling that occurs in the ventricle in the setting of heart failure and myocardial infarction to create the substrate for sudden death and ventricular tachycardia and fibrillation.
Dr. Olgin also runs the UCSF Cardiology Clinical Coordinating Center. He is PI of the VEST study, a multi-center, international randomized study to determine whether a wearable defibrillator vest can reduce the big early sudden death rate post-MI.

UCSF Profiles Page


Mary J. Malloy, M.D.

 

Research Interests:
Molecular mechanisms in lipoprotein metabolism; genetic basis of metabolic disorders of lipoproteins and of arteriosclerosis

Summary:
My chief research foci are the discovery of previously unknown disorders that affect the metabolism of cholesterol and other lipids, and the discovery of genes that are associated with the risk of heart attack and stroke. Identification of these diseases and genetic markers of risk will lead to improved prevention and treatment of coronary disease and stroke.

UCSF Profiles Page


Robert W Mahley, B.S., Ph.D., M.D.

Mahley

Research Interests:

I. Plasma lipoprotein metabolism Hepatic and intestinal origin of plasma lipoproteins;  Apolipoprotein structure and function, especially apolipoprotein (apo) E and apoB;  Characterization of cell surface receptors for lipoproteins;  Role of the liver in cholesterol homeostasis. II. Relationship of plasma lipoproteins to the development and progression of atherosclerosis  Role of diet in progression of coronary artery heart disease;  Effect of apoE production in the artery wall on inhibition of atherogenesis. III. Role of apoE in the nervous system. Effect on peripheral nerve injury and repair;  Role in the pathogenesis of Alzheimer’s disease;  Effect on neuronal cytoskeleton. IV. Turkish Heart Study  Director of epidemiological study to determine the risk factors responsible for coronary artery disease in Turkey;  Characterization of genetic polymorphisms responsible for low HDL-C levels and metabolic syndrome in Turks;  Co-director of physician continuing education program for Turkish doctors and medical students in the area of cardiovascular disease.

Summary:
My research has focused on the structure and function of apolipoprotein (apo) E, specifically its critical role in cholesterol homeostasis and atherosclerosis and, more recently, in Alzheimer’s disease and neurodegeneration. ApoE regulates the clearance of plasma lipoproteins by mediating their binding to lipoprotein receptors and is also involved in peripheral nerve regeneration, lipid transport in the nervous system, and cytoskeletal stability and neurite extension and remodeling. A goal of our research is to develop a drug that will block the detrimental effects of apoE4 in cardiovascular and neurodegenerative disorders.

UCSF Profiles Page


Pui-Yan Kwok, M.D., Ph.D.

Kwok

Research Interests:
Genetic analysis of complex traits, DNA technology development

Summary:
We are developing efficient methods to analyze single DNA molecules and applying molecular genetic tools to identify genetic factors associated with complex human traits such as longevity, sudden cardiac arrest, stroke, psoriasis, lupus, and kidney transplantation outcome. We are also conducting studies to identify genetic factors associated with drug response. The overall goal of our research is to develop the tools for genetic analysis of whole genomes and apply these tools to elucidate the genetic factors associated with common human diseases and phenotypes. The sequencing of the human genome and the mapping of common genetic variation by the International HapMap Consortium, in which our lab participated, have inspired an explosion of new technologies, accelerating identification of genetic susceptibility loci. Our phenotypes of interest include kidney transplantation outcomes, longevity, pharmacogenetics of membrane transporters, sudden cardiac death, psoriasis, skin cancer and brian vascular malformations and hemorrhage.

UCSF Profiles Page


Theodore W Kurtz, M.D.

Kurtz

Research Interests:
Molecular Genetics of Complex Disease, Genetic Models of Hypertension and the Metabolic Syndrome, Transcription Modulating Drugs

Summary:
Hypertension affects 30% of the population and is a major cause of stroke, kidney failure, and heart disease. Patients with hypertension are also at increased risk for diabetes. Our laboratory is studying genetic mechanisms that promote increased blood pressure with the goal of identifying new opportunities for the prevention and treatment of hypertension, diabetes, and cardiovascular disease.

UCSF Profiles Page


Ronald M Krauss, M.D.

Krauss

Research Interests:
Summary:
Lipoprotein metabolism and risk of cardiovascular disease

Despite recent advances in treatment, cardiovascular disease (CVD) remains the leading cause of death in the US and will soon achieve this status globally. Our group’s research is aimed at addressing three major challenges for reducing this enormous disease burden. First, standard diagnostic procedures do not identify a high proportion of children and adults who are at risk for CVD. We have developed and implemented a sophisticated new procedure that, by analyzing individual lipoprotein particles, provides more specific information than that afforded by ordinary cholesterol testing, and hence is capable of improving both the assessment and management of CVD risk. Second, dietary and lifestyle guidance has failed to substantially impact CVD risk factors, particularly those related to overweight and obesity. We have demonstrated that carbohydrate restriction can reverse the high risk lipid profile found in a high proportion of overweight and obese individuals even without weight loss, and that this effect is independent of saturated fat intake. These findings have helped support dietary guidelines that place a greater emphasis on limiting refined carbohydrates than fats. Third, despite the awareness of wide interindividual variability in response to treatments aimed at reducing CVD risk, the potential benefits of applying genomic tools for developing personalized approaches for maximizing CVD risk reduction have not been realized. A major component of our research program has been the application and development of genomic methodology for dissecting genetic influences on the therapeutic responses to statins, the most widely prescribed class of drugs for reducing CVD risk.

UCSF Profiles Page


John P Kane, M.S., M.D., Ph.D.

Kane

Research Interests:
Structure and function of lipoproteins; genetic determinants of arteriosclerosis

Summary:
The Kane laboratory focuses on the discovery of the native structures of lipoproteins ( proteins that carry cholesterol so that we can better understand how they are involved in the development of heart disease and stroke. We are also active in the discovery of alterations in genes that lead to heart disease and stroke.

UCSF Profiles Page


Yuet W Kan, M.D. , D.Sc.

Kan

Research Interests:
The mechanisms of globin production and exploring novel ways of inserting genes into mammalian cells; investigating newer approaches for fetal diagnosis of genetic disorders

Summary:
Sickle cell anemia and thalassemia are the most common genetic diseases and affect people of African, Mediterranean, Middle Ease and Southeast Asian origins. Our laboratory has pioneered the diagnosis of these conditions by DNA tests and is currently investigating the use of patient specific stem cells for their treatment.

UCSF Profiles Page


Guo Huang, Ph.D.

Huang

Research Interests:
Comparative study of heart development and regeneration, ischemic heart diseases, stem cell, cardiomyocyte proliferation, regenerative biology

Summary:
The ability to regenerate damaged or lost tissues varies dramatically across organisms and developmental stages. For example, heart regeneration is robust in adult zebrafish and newborn mouse while very limited in adult mouse and human. This presents a particular problem for patients with a heart attack who suffer from a significant loss of heart muscle cells and subsequent life-threatening functional deterioration of the heart.

By taking a comparative approach to study regenerative versus non-regenerative heart repair processes in zebrafish and mouse, we seek to uncover ancestrally conserved injury responses and more importantly, to identify the signals blocking regeneration in the mammalian heart and consequently new treatment strategies for heart diseases.

UCSF Profiles Page