Category: Vascular Biology and Atherothrombosis


Andrew J Connolly, M.D., Ph.D.

Research Interests:Basic and translational research in cardiovascular and pulmonary pathology

 

The goal of our research is to explore pathology of the heart, blood vessels, and lungs, using both patient materials and animal models. This includes the heart muscle disorders underlying heart failure, thrombotic occlusion of blood vessels, diseases of the aorta, and lung cancer models.

UCSF Profiles Page: 


Roshanak Irannejad, Ph.D.

irannejad

Research Interests: Internal membrane compartments as hubs of signaling

To function properly, cells and tissue must receive and interpret a large variety of signals. They do so, in part, through signaling receptors, some of which reside on cell surfaces known as plasma membranes. We study adrenergic receptors, which are targets of commonly used medicines including alpha and beta blockers. By developing a new class of sensors that allow for detection and visualization of signaling events in living cells, we made the unexpected finding that signaling cues to cells not only act on cell surface receptors but also on internal cellular compartments. This observation raises numerous questions pertaining to fundamental aspects of cell signaling and suggests that cells have spatially compartmentalized signaling hubs. This basic biological insight has clinical implications as well. For example, certain beta-blockers are known to have differential clinical efficacies but the underlying reasons for these differences are not known. We have found that different beta blockers act on distinct hubs of signaling. Beyond their well-established roles in cardiac physiology, adrenergic receptors regulate a wide variety of important physiologically and behavioral processes. We are using our newly developed tools to investigate the consequences of signaling from internal compartments on a range of cellular, physiological, and behavioral outcomes.

UCSF Profiles Page: http://profiles.ucsf.edu/roshanak.irannejad

 

 


Arthur Weiss, M.D., Ph.D.

Weiss

Research Interests:
Cell Surface Molecules and Molecular Events Involved in Lymphocyte Activation

Summary:
Dr. Weiss studies on how the functions of cells of the immune system are regulated. The immune system protects individuals from infections and malignancies. However, it is also involved in undesirable destructive responses, such as in autoimmune and allergic diseases as well as atherosclerosis and transplant rejection.

UCSF Profiles Page


Orion D Weiner, Ph.D.

Weiner

Research Interests:
Cell polarity, chemotaxis, actin cytoskeleton, cell signaling, cell migration, microscopy, biochemistry, neutrophils, systems biology, self-organization, inflammation, Rac, PI3Kinase, WAVE complex.

Summary:
Proper movement in response to cues from the outside world is as important for single cells as it is for drivers on a busy highway. If cues are misinterpreted or the movement goes awry, terrible accidents ensue, the delicate wiring of the nervous system fails, single-celled organisms can`t hunt or mate, the immune system ceases to function properly, and cancer cells spread from one part of the body to another. How do single cells, without the benefit of a brain, interpret the subtle micro-world of attractants and repellents to decide where to go? Our research focuses on dissecting the inner workings of the cellular “compass” used to guide cells on their journey. Because the core of the compass has been conserved over more than a billion years of evolution, we have been able to combine discoveries from yeast to humans to glimpse some rough outlines of the underlying machinery. However, many of the important connections are still missing. Our research focuses on identifying these key missing components and how they are wired together to process information with the hope that we can eventually make cells move when (and where) we want them to and stop them when we don’t.

UCSF Profiles Page


Lei Wang, Ph.D.

wangL

Research Interests:
Design and encode novel amino acids to study biological processes and to develop new biotherapeutics.

Summary:
We build proteins in living cells using new amino acids. By harnessing the novel properties of these new building blocks, we probe biological processes in their natural settings and engineer unique biomolecules to understand mechanisms of cellular function and to develop new treatments of diseases.

UCSF Profiles Page


Rong Wang, Ph.D.

Rong Wang photo copy

Research Interests:
Molecular Regulation of Mammalian Arterial Venous Specification

Summary:

Molecular Regulation of Arterial-Venous Programming in Development and Disease   

 

Research in my lab is focused on angiogenesis, or new blood vessel formation, which is a critical process in development and disease. My lab aims to advance the fundamental understanding of the cellular, molecular, and hemodynamic mechanisms underlying arterial-venous programming in normal and pathological angiogenesis. We use cutting-edge mouse genetics to delete or express genes in a cell lineage-specific and temporally controllable fashion in endothelial cells. This advance is crucial for the study of candidate genes in vascular function, especially when combined with sophisticated 5D two-photon imaging (3D + blood flow over time). These innovative approaches provide us with exceptional access to gene function in both healthy and pathological conditions in living animals. This basic approach is complemented by preclinical studies with patient samples in addition to our mouse models of disease. In particular, we investigate the molecular regulators governing arterial-venous programming – particularly the Notch, ephrin-B2, and TGF-beta signaling pathways – in both normal and pathological conditions.

 

 

Ongoing projects:

 

Vascular Development.  Our lab aims to identify molecular regulators of arterial and venous cell fate determination and morphogenesis in embryonic development. We primarily focus on the origin and morphogenesis of the dorsal aorta and cardinal vein, the first major artery-vein pair to form in the body.

 

Arteriovenous Malformation (AVM).  AVMs are severe vascular anomalies that shunt blood directly from arteries to veins, displace intervening capillaries, and bypass tissues. My lab studies the pathogenesis and regression of AVMs. We have a long history of investigation using animal models into Notch-mediated AVM pathogenesis as well as into potential treatments for the disease.

Arterial occlusive diseases and arteriogenesis.  The body responds to arterial occlusions by inducing arteriogenesis, or radial enlargement of arteries, to restore circulation to blood-deprived tissue. We are investigating pro-arteriogenic molecular regulators to uncover potential therapeutic targets, which may be used to enhance the body’s natural defense against arterial occlusive disease.

Cancer. Solid tumors induce arteriogenesis to support their growth. We investigate the molecular stimulators of arteriogenesis in tumor progression and regression, particularly in hepatocellular carcinoma (HCC), which is characterized by large and highly arterialized tumor masses in the liver. We study genes regulating tumor arterial growth and modify these genes to target tumor arterial supply and to inhibit HCC growth.

Ultimately, through these distinct but interconnected fields of study, we hope to identify novel drug targets and inform rational design of new therapeutics to treat human disease.

UCSF Profiles Page


Matthew L Springer, Ph.D.

 

Matt 2016

Research Interests:
Angiogenesis, VEGF, stem cells, progenitor cells, gene therapy, heart failure, myocardial infarction, coronary artery disease, cardiac regeneration, peripheral artery disease, vascular injury, nitric oxide, flavanols, skeletal muscle myoblasts, secondhand smoke

Summary:
Our research interests include cell therapy and gene therapy approaches to studying cardiovascular disease, with the goals of exploring potential treatments and understanding underlying mechanisms involved in angiogenesis, vascular function, and treatments for myocardial infarction. The laboratory is studying the effects of VEGF and pleiotrophin gene therapy on the heart and limb vasculature in mice. Further interests center in the therapeutic effects of ultrasound-guided bone marrow cell implantation into the heart after myocardial infarction, with a special emphasis on the therapeutic implications of the age and cardiac disease state of the cell donor. Similarly, the lab is studying the effects of age and disease on circulating angiogenic cells (sometimes called endothelial progenitor cells), with a focus on the roles of endothelial nitric oxide synthase and nitric oxide in the function of these cells. Lastly, they have developed a rat model of endothelium-dependent flow-mediated vasodilation, and are using it to examine mechanisms underlying vascular reactivity and how they are affected by cigarette smoke exposure.

UCSF Profiles Page


Paul C Simpson, M.D.

Simpson

Research Interests:
Molecular & cellular mechanisms of myocardial hypertrophy and heart failure Adrenergic receptors, signaling, and drug development

Summary:
Dr. Simpson is working to develop new drugs to treat heart failure, one of the most common causes of hospitalization and death in the USA and Western World. He has recently identified a promising drug target, alpha-1-adrenergic receptors, and is working to translate this into clinical use.

UCSF Profiles Page


Peter E Oishi, M.D.

Oishi

Research Interests:
Pulmonary vascular disease, endothelial function, congenital heart disease, pulmonary venous stenosis.

Summary:
Pulmonary vascular endothelial function under conditions of abnormal pulmonary blood flow, secondary to congenital cardiac defects.

A significant number of infants and children born with heart defects are also at risk for developing problems with the blood vessels of the lung (pulmonary vascular disease). Our research is focused on exploring the mechanisms that link the abnormal blood flow patterns that accompany many of these common heart defects with the development of pulmonary vascular disease. In order to study these mechanisms our laboratory uses animal models of various cardiac defects that allow an integrated approach for studying the accompanying physiologic, biochemical, molecular, and cellular derangements. Our hope is that by elucidating the controlling mechanisms, new therapies and treatment strategies can be devised that will improve the outcome for these children.

UCSF Profiles Page


Takashi Mikawa, M.S., Ph.D.

Mikawa

Research Interests:
Morphogenesis, development, body axis, patterning, cell-to-cell communication, cell architecture, cell fate diversification, cardiovascular system, cardiac conduction system, central nervous system, haemodynamics, growth factor signaling.

Summary:
The establishment of extremely complicated structures and functions of our organ systems depends upon orchestrated differentiation and integration of multiple cell types. Our group focuses to explore a common developmental plan for successful organogenesis, by investigating the mechanisms involved in the differentiation and patterning of the cardiovascular and central nervous systems.

UCSF Profiles Page


Donald M McDonald, M.D., Ph.D.

Mcdonald

Research Interests:
Angiogenesis; cancer; chronic inflammation; endothelial cells; vascular remodeling

Summary:
Our laboratory is studying the cellular mechanisms of angiogenesis, vascular remodeling, and plasma leakage in mouse models of chronic inflammation and cancer. We are also studying cellular changes in lymphatic vessels in disease models. The goal is use novel in vivo cell biological approaches to identify abnormalities of blood and lymphatic vasculature that can serve as the basis of novel treatments. In one area of research, we are examining the mechanism of the action of VEGF, angiopoietins, and other factors on blood vessel growth, remodeling, and leakiness. Other experiments include exploring the mechanism and reversibility of vascular remodeling and angiogenesis and examining the cellular actions of inhibitors of angiogenesis and lymphangiogenesis in tumors and inflammatory disease. We are also studying the cellular mechanisms of plasma leakage in disease. Here, the mechanism of plasma leakage from tumor vessels, due to a defective endothelial monolayer, contrasts with leakage in inflammation, where intercellular gaps form in seconds and reseal spontaneously. Multiple different disease models in wild-type, transgenic, and knockout mice are being used in combination with novel therapeutic agents to identify the cells and growth factors that drive angiogenesis and vascular remodeling and to understand the mechanism of reversibility of vascular changes in inflammation and cancer.

UCSF Profiles Page


Michael A Matthay, M.D.

Matthay

Research Interests:
Alveolar epithelial transport under normal and pathologic conditions. Resolution of pulmonary edema Mechanisms of Acute Lung Injury

Summary:
My research program is focused on identifying mechanisms responsible for fluid transport across the alveolar epithelium using cell, molecular, and in vivo models. In addition, our group is focused on understanding the mechanisms responsible for the development and resolution of pulmonary edema and acute lung injury in critically ill patients with acute respiratory failure. The studies include experimental and human-based studies designed to understand the pathogenesis of acute respiratory failure and to test potential new therapies. The work is supported primarily by grants from the National Heart, Lung, and Blood Institute.

UCSF Profiles Page