Category: Developmental Biology and Congenital Anomalies


Keith E Mostov, M.D., Ph.D.

Mostov

Research Interests:
Polarized epithelial membrane traffic and epithelial morphogenesis.

Summary:
How do individual cells organize to form a multicellular tissue? An individual cell can exhibit many different behaviors – proliferation, migration, adhesion, polarization, differentiation, and death. But to build a tissue, a population of cells must coordinate these individual behaviors across space and time. Little is understood about the mechanisms that orchestrate the actions of single cells during morphogenesis. To analyze these issues, we are studying how epithelial cells form three-dimensional organs. Epithelia are coherent sheets of cells that form a barrier between the interior of the body and the outside world. Internal epithelial organs contain two types of building blocks, cysts and tubules. Our experimental strategy uses culture of epithelial cells in a three-dimensional extracellular matrix. Single cells plated in matrix grow to form hollow cysts lined by a monolayer of cells. We have discovered a pathway containing the small GTPase, rac1, alpha1-beta3 integrin, and laminin, which coordinates cell polarity, so that apical surfaces of the cells are all oriented towards the cyst lumen. Cysts are remodeled into by growth factors, which cause transient dedifferentiation and migration, followed by redifferentiation into polarized epithelial cells lining the tubule.

Spatial asymmetry is fundamental to the structure and function of most eukaryotic cells. A basic aspect of this polarity is that the cell’s plasma membrane is divided into discrete domains. The best studied and simplest example of this occurs in epithelial cells, which line exposed body surfaces. Epithelial cells have an apical surface facing the outside world and a basolateral surface contacting adjacent cells and the underlying connective tissue. These surfaces have completely different compositions. Epithelial cells use two pathways to send proteins to the cell surface. Newly made proteins can travel directly from the trans-Golgi network (TGN) to either the apical or basolateral surface. Alternatively, proteins can be sent to the basolateral surface and then endocytosed and transcytosed to the apical surface. We are studying the machinery that is responsible for the specificity and regulation of polarized membrane traffic in epithelial cells. I will discuss several recent results.
1. The SNARE hypothesis provides a unified model for how intracellular vesicular targeting and fusion work. Proteins on transport vesicles, known as v-SNAREs, pair with corresponding t-SNAREs on target membranes, leading to vesicle fusion. The correct pairing of particular v- and t-SNAREs can provide a mechanism for specificity of targeting and fusion. Polarized epithelial cells are an ideal system in which to test the role of SNAREs in specificity, as these cells contain two plasma membrane targets, the apical and basolateral surfaces, as well as multiple classes of vesicles traveling to each surface. We have found that that the t-SNARE syntaxin 3, is involved with transport to the apical surface, while the related t-SNARE, syntaxin 4, is utilized for transport to the basolateral surface.
2. The polymeric immunoglobulin receptor (pIgR) transcytoses IgA from the basolateral to the apical surface. Transcytosis is stimulated by ligand binding. Binding of IgA causes dimerization of the pIgR, which leads to activation of a non-receptor tyrosine kinase, p62Yes. Mice knocked out for this kinase are deficient in IgA transport. Phosphatidylinositol-specific phospholipase C gamma is activated, resulting in production of DAG and IP3. The DAG activates protein kinase Ce, which stimulates transcytosis. The IP3 raises intracellular free calcium, which also stimulates transcytosis. Stimulation of transcytosis also involves the small GTPase, rab3b, which directly interacts with the pIgR.
3. When epithelial cells, such as MDCK cells, are plated in a 3 dimensional collagen matrix, the cells form hollow, polarized cysts with the apical surface facing the lumen of the cyst. Overexpression of a dominant negative form of the small GTPase, rac, retards lumen formation and leads to a partial reversal of polarity, with the apical surface oriented towards the outside of the cyst. Growth of the cysts laminin rescues this phenotype, indicating that interfering with rac function interferes with the ability of the cell to assemble, laminin, which normally provides a spatial cue.
4. When collagen-grown cysts are stimulated with hepatocyte growth factor (HGF), the cysts develop branching tubules, providing a simple model system for studying tubulogenesis. The exocyst is an eight-subunit complex involved in targeting transport vesicles to specific regions of the plasma membrane. We have found that HGF treatment causes the exocyst to relocalize from the region of the tight junction to the growing tubule, indicating that new membrane is being directed to the tubule. Overexpression a subunit of the exocyst, hSec10, causes the cysts to elaborate an increased umber of tubules, indicating a direct connection between membrane traffic and tubulogenesis.

UCSF Profiles Page


Takashi Mikawa, M.S., Ph.D.

Mikawa

Research Interests:
Morphogenesis, development, body axis, patterning, cell-to-cell communication, cell architecture, cell fate diversification, cardiovascular system, cardiac conduction system, central nervous system, haemodynamics, growth factor signaling.

Summary:
The establishment of extremely complicated structures and functions of our organ systems depends upon orchestrated differentiation and integration of multiple cell types. Our group focuses to explore a common developmental plan for successful organogenesis, by investigating the mechanisms involved in the differentiation and patterning of the cardiovascular and central nervous systems.

UCSF Profiles Page


Thomas B Kornberg, B.A., Ph.D.

Kornberg

Research Interests:
Developmental regulation

Summary:
My laboratory investigates the mechanisms that pattern developing organs. We carry out our studies on the fruit fly, as it offers many advantages with its ready accessibility to histological analysis and the ease with which genetic manipulations can be made. We focus on two systems  the fly wing and the fly lung. Both are model systems that offer opportunities to identify and characterize basic genetic and molecular mechanisms that are relevant to human development and disease.

UCSF Profiles Page


Natalia Z Jura, PhD

Research Interests:
Receptor tyrosine kinases, kinase regulatory mechanisms, membrane proteins, feedback regulation of cell signaling

Summary:
We study basic mechanisms of cellular signaling by Receptor Tyrosine Kinases with a goal to understand how cells receive and process growth signals provided by the neighboring cells and the extracellular milieu. Receptor Tyrosine Kinases are single pass transmembrane receptors that catalyze tyrosine phosphorylation upon activation of their intracellular kinase domains. These receptors are principal regulators of growth and survival signals in cells and therefore frequently become deregulated in human diseases. We are interested in understanding how the kinase activity of these receptors is regulated by ligand binding and how the receptors associate with their regulatory components during the activation process. By combining biochemistry and cell biology we are studying these processes in the reconstituted membrane systems in vitro and in the plasma membrane of the living cells. We also use crystallography to gain an atomic resolution insight into Receptor Tyrosine Kinase regulation that will help us design new approaches for therapeutic intervention.

UCSF Profiles Page

Jura Lab Website

 


Holly A Ingraham, Ph.D.

Ingraham

Research Interests:
Summary:
Our research is focused on development of endocrine and brain regions that contribute to energy balance and reproduction. We concentrate on NR5A nuclear hormone receptors that specify cell fate in developing endocrine organs and the hypothalamus using structural biology, biochemistry and physiology.

UCSF Profiles Page


Guo Huang, Ph.D.

Huang

Research Interests:
Comparative study of heart development and regeneration, ischemic heart diseases, stem cell, cardiomyocyte proliferation, regenerative biology

Summary:
The ability to regenerate damaged or lost tissues varies dramatically across organisms and developmental stages. For example, heart regeneration is robust in adult zebrafish and newborn mouse while very limited in adult mouse and human. This presents a particular problem for patients with a heart attack who suffer from a significant loss of heart muscle cells and subsequent life-threatening functional deterioration of the heart.

By taking a comparative approach to study regenerative versus non-regenerative heart repair processes in zebrafish and mouse, we seek to uncover ancestrally conserved injury responses and more importantly, to identify the signals blocking regeneration in the mammalian heart and consequently new treatment strategies for heart diseases.

UCSF Profiles Page

Website


Bruce R Conklin, M.D.

Conklin

Research Interests:
Engineering Hormone Signaling Pathways In Vivo

Summary:
Hormone receptors direct the development and function of complex tissues, including those found in the cardiovascular system. The focus of our research is on the largest known family of receptors for hormones and drugs, the G protein coupled receptors. We combine genetic engineering, stem cells and new computer programs to find new treatments of cardiovascular disease.

UCSF Profiles Page


Ronald I Clyman, M.D.

Clyman

Research Interests:
Cardiology, Cell Biology, Developmental Biology, Neonatology, Neonatal Cardiology

Summary:
The ductus arteriosus is a vital fetal blood vessel that diverts blood away from the fetus’s lungs and towards the placenta during life inside the uterus. After birth it is essential that the ductus arteriosus constricts and obliterates itself so that the normal postnatal pattern of blood flow can be established. Essentially all full term infants will have closed their ductus by the third day after birth. Preterm infants of less than 30 weeks gestation have a high chance of having a persistently open or patent ductus arteriosus (PDA). If the ductus arteriosus remains open it contributes to the development of several neonatal morbidities: prolonged ventilator dependency, pulmonary hemorrhage, pulmonary edema, chronic lung disease and necrotizing enterocolitis. Our laboratory has been studying the factors that regulate normal closure of the ductus arteriosus in full term infants and abnormal persistent ductal patency in preterm infants. Approaches used to study this problem are: controlled clinical trials, integrated whole animal physiology, in vitro organ culture, and cell biology.

UCSF Profiles Page


Pao-Tien Chuang, M.D. , Ph.D.

Chuang

Research Interests:
Cell-cell signaling during mammalian development and in postnatal physiology

Summary:
We use mouse as a model system to understand how embryos develop. This knowledge is critical for understanding the basis of human congenital defects. Moreover, many adult diseases have their origin in development. Thus, our studies have important implications for developing stem cell therapy and identifying the cause of cancers.

 

UCSF Profiles Page


Benoit G Bruneau, B.Sc., Ph.D.

Bruneau

Research Interests:
Heart development, congenital heart disease, chromatin, embryogenesis, transcription

Summary:
Our laboratory studies the genes that direct a cell to become a heart cell, focusing on the machinery within each cell that turns genes on or off. Many of these factors are implicated in human congenital heart disease, and our studies also focus on understanding the basis of these diseases.

 

UCSF Profiles Page


Brian L. Black, Ph.D.

Research Interests:
Cardiac and skeletal muscle development, differentiation, and function

Summary:
Tissues and organs form during mammalian embryonic development through the integration of numerous signaling and transcriptional pathways. Our major goal is to define pathways controlling organ formation to understand normal development, the molecular basis for congenital defects, and potential mechanisms for organ regeneration and repair.

We use a combination of gene knockouts, transgenic reporter assays, biochemical, computational, and genomic approaches to investigate basic developmental mechanisms. We primarily use the mouse as a model system, but several current projects also use cultured cells or zebrafish as models to understand developmental gene regulation. Current work in the lab is focused primarily on cell autonomous mechanisms underlying gene regulation, tissue specification, organ formation and metabolic control during cardiovascular, craniofacial, and neural crest development.

Home

UCSF Profiles Page