Category: Metabolism obesity and metabolic diseases


Sagar P. Bapat, MD, PhD

Research Interests:
Development of a novel T cell therapy to induce beige adipogenesis

Summary:
Type 2 diabetes is a leading cause of mortality in the United States, and its prevalence continues to rise in concert with the rising prevalence of obesity, the predominant risk factor for developing insulin resistance and diabetes. Obesity can result from a multitude of different complex physiological and socioeconomic conditions that individuals are often unable to overcome. Simply stated however, obesity is a manifestation of excessive storage of energy. Consequently, it could potentially be mitigated by turning on the body’s dormant systems for burning, not storing, that energy. In this proposal, we will develop regulatory T (Treg) cells as a powerful class of engineered, non-destructive cellular immunotherapies to tackle obesity and its co-associated metabolic disease type 2 diabetes. We will engineer fat-localizing Treg cells to deliver signals to convert energy-storing adipose tissue (AT) into energy-burning AT, thereby reversing or preventing obesity and insulin resistance in mice (and eventually humans.)

https://diabetes.ucsf.edu/lab/bapat-lab

UCSF Profiles Page


Andy Chang, Ph.D.

ChangA

Research Interests:

Acute oxygen and metabolic sensing in cardiopulmonary regulation and disease

Summary:

To maintain optimal oxygen delivery to tissues, there is constant regulation of respiratory and cardiovascular systems by mechanisms that act on different time scales. On a fast time scale, a small chemosensory organ called the carotid body senses decreases in blood oxygen to increase breathing within seconds. The carotid body can also regulate cardiovascular function acutely, and carotid body hyperactivity contributes to disease progression in hypertension, heart failure, and metabolic syndrome. Using the mouse as our primary model, we aim to identify the molecular mechanisms that mediate the carotid body’s ability to detect changes in blood oxygen as well as other metabolic signals, such as carbon dioxide and acid. One long term goal is to apply this knowledge to manipulating carotid body activity in the treatment of cardiovascular disease and metabolic syndrome.

UCSF Profiles Page


Biao Wang, Ph.D.

WangB

Research Interests:
Obesity, diabetes, hormones, cAMP, kinase, signaling transduction, transcriptional regulation

Summary:
Type II diabetes mellitus accounts for 90-95% of all cases of diabetes, and this heterogeneous disorder afflicts an estimated 6% of the adult population in Western society. Energy imbalance by high calorie intake and/or lack of physical activity can lead to obesity, which is often associated with an increased risk of developing insulin resistance followed by type II diabetes. Our research is focused on understanding how circulating hormones modulate energy balance in multiple metabolic tissues, and how disruption of these hormonal actions contributes to pathophysiology of type II diabetes.

UCSF Profiles Page


Takashi Mikawa, M.S., Ph.D.

Mikawa

Research Interests:
Morphogenesis, development, body axis, patterning, cell-to-cell communication, cell architecture, cell fate diversification, cardiovascular system, cardiac conduction system, central nervous system, haemodynamics, growth factor signaling.

Summary:
The establishment of extremely complicated structures and functions of our organ systems depends upon orchestrated differentiation and integration of multiple cell types. Our group focuses to explore a common developmental plan for successful organogenesis, by investigating the mechanisms involved in the differentiation and patterning of the cardiovascular and central nervous systems.

UCSF Profiles Page


Mary J. Malloy, M.D.

 

Research Interests:
Molecular mechanisms in lipoprotein metabolism; genetic basis of metabolic disorders of lipoproteins and of arteriosclerosis

Summary:
My chief research foci are the discovery of previously unknown disorders that affect the metabolism of cholesterol and other lipids, and the discovery of genes that are associated with the risk of heart attack and stroke. Identification of these diseases and genetic markers of risk will lead to improved prevention and treatment of coronary disease and stroke.

UCSF Profiles Page


Robert W Mahley, B.S., Ph.D., M.D.

Mahley

Research Interests:

I. Plasma lipoprotein metabolism Hepatic and intestinal origin of plasma lipoproteins;  Apolipoprotein structure and function, especially apolipoprotein (apo) E and apoB;  Characterization of cell surface receptors for lipoproteins;  Role of the liver in cholesterol homeostasis. II. Relationship of plasma lipoproteins to the development and progression of atherosclerosis  Role of diet in progression of coronary artery heart disease;  Effect of apoE production in the artery wall on inhibition of atherogenesis. III. Role of apoE in the nervous system. Effect on peripheral nerve injury and repair;  Role in the pathogenesis of Alzheimer’s disease;  Effect on neuronal cytoskeleton. IV. Turkish Heart Study  Director of epidemiological study to determine the risk factors responsible for coronary artery disease in Turkey;  Characterization of genetic polymorphisms responsible for low HDL-C levels and metabolic syndrome in Turks;  Co-director of physician continuing education program for Turkish doctors and medical students in the area of cardiovascular disease.

Summary:
My research has focused on the structure and function of apolipoprotein (apo) E, specifically its critical role in cholesterol homeostasis and atherosclerosis and, more recently, in Alzheimer’s disease and neurodegeneration. ApoE regulates the clearance of plasma lipoproteins by mediating their binding to lipoprotein receptors and is also involved in peripheral nerve regeneration, lipid transport in the nervous system, and cytoskeletal stability and neurite extension and remodeling. A goal of our research is to develop a drug that will block the detrimental effects of apoE4 in cardiovascular and neurodegenerative disorders.

UCSF Profiles Page


Dengke Ma, Ph.D.

Ma

Research Interests:

Genetic approaches to understanding physiology and diseases, oxygen-modulated metabolism and behavior; brain-heart-lung interaction and interoception; ischemic disease and tolerance; novel genes and pathways evolutionarily conserved in C. elegans and humans.

Summary:
As humans, we drink when thirsty, eat when hungry, and increase our breathing and heart rates when short of oxygen. How do we (our bodies) know when and how to respond to changes in internal bodily states (e.g. loss of nutrient or oxygen)? Genes and traits that facilitate such underlying mechanisms confer great advantages for animal survival and are strongly selected for during evolution. Using both C. elegans and tractable mammalian model systems, we seek to understand the molecular, cellular and neural circuit basis of how animals sense and respond to changes in internal metabolic and energetic states to elicit behavior and maintain homeostasis. Dysfunction of these fundamental physiological processes leads to many disorders, including obesity, diabetes, neurological and cardiovascular diseases.

UCSF Profiles Page


Ronald M Krauss, M.D.

Krauss

Research Interests:
Summary:
Lipoprotein metabolism and risk of cardiovascular disease

Despite recent advances in treatment, cardiovascular disease (CVD) remains the leading cause of death in the US and will soon achieve this status globally. Our group’s research is aimed at addressing three major challenges for reducing this enormous disease burden. First, standard diagnostic procedures do not identify a high proportion of children and adults who are at risk for CVD. We have developed and implemented a sophisticated new procedure that, by analyzing individual lipoprotein particles, provides more specific information than that afforded by ordinary cholesterol testing, and hence is capable of improving both the assessment and management of CVD risk. Second, dietary and lifestyle guidance has failed to substantially impact CVD risk factors, particularly those related to overweight and obesity. We have demonstrated that carbohydrate restriction can reverse the high risk lipid profile found in a high proportion of overweight and obese individuals even without weight loss, and that this effect is independent of saturated fat intake. These findings have helped support dietary guidelines that place a greater emphasis on limiting refined carbohydrates than fats. Third, despite the awareness of wide interindividual variability in response to treatments aimed at reducing CVD risk, the potential benefits of applying genomic tools for developing personalized approaches for maximizing CVD risk reduction have not been realized. A major component of our research program has been the application and development of genomic methodology for dissecting genetic influences on the therapeutic responses to statins, the most widely prescribed class of drugs for reducing CVD risk.

UCSF Profiles Page


John P Kane, M.S., M.D., Ph.D.

Kane

Research Interests:
Structure and function of lipoproteins; genetic determinants of arteriosclerosis

Summary:
The Kane laboratory focuses on the discovery of the native structures of lipoproteins ( proteins that carry cholesterol so that we can better understand how they are involved in the development of heart disease and stroke. We are also active in the discovery of alterations in genes that lead to heart disease and stroke.

UCSF Profiles Page


David G Gardner, M.D.

Gardner

Research Interests:
Cardiovascular endocrinology, natriuretic peptides, natriuretic peptide receptors, vitamin D, nuclear hormone receptors, growth and hypertrophy in cardiovascular system and kidney, obesity-related cardiomyopathy.

Summary:
Our laboratory is interested in understanding the role that hormones play in the control of growth and function in the cardiovascular system (heart and blood vessels). We are particularly interested in vitamin D and the natriuretic peptide hormones, two classes of hormones that have beneficial effects on cardiovascular function.

UCSF Profiles Page