Category: Site SCVRB


Jan Christoph, PhD

 







Research Interests:
Arrhythmias and Imaging

Summary:
In the Cardiac Vision Laboratory we focus on developing imaging methodology that can be used to better diagnose life-threatening heart rhythm disorders and heart disease. Combining techniques from bioengineering, computer vision and artificial intelligence with the physics of complex biological systems, we aim to study the heart’s highly dynamic behavior, and bridge the gap between basic cardiovascular science, high-resolution imaging and numerical modeling. 


UCSF Profiles Page 


Website


Priscilla Hsue, MD

Research Interests:
Inflammation, Immunology and Cardiovascular Disease

Summary:
I oversee a multidisciplinary team which is studying the role of inflammation in cardiovascular disease with a focus on HIV.  Our work includes descriptions of cardiovascular manifestations in HIV, elucidation of mechanisms underlying this disease process, and proof-of-concept therapeutic interventions to decrease CV risk with potential impact on HIV cure.

UCSF Profiles Page

 


Balyn W. Zaro, Ph.D.

Research Interests:

Hematopoiesis, innate immunity and proteomics/mass spectrometry

Summary:

Our lab takes a chemical biology and proteomics approach to optimizing drug selectivity and studying the immune system and blood formation. We aim to profile how different types of cells metabolize drugs in order to develop more-selective therapeutics and are interested in identifying targets critical for modulating the innate immune response during cancer and infection.

 

UCSF Profiles Page:


Abigail Buchwalter Cool, Ph.D.

 

Research Interests:
We study the mechanisms that govern the specialization and maintenance of nuclear organization across cell types.

Summary:
We seek to understand how the organization of the cell nucleus is established, specialized across cell types, and maintained over time to influence cellular identity. “Nuclear organization” involves the non-random packaging of the genome within the nucleus, but also the assembly and interactions of other nuclear structures, such as the nuclear lamina and the nucleolus.

This work begins with a particular focus on the nuclear lamina, a nuclear structure that is essential for mammalian development and is mutated in ~15 “laminopathy” diseases that afflict the heart, muscle, bone, fat, and nervous system. We focus on three main thematic areas: (i) defining the essential roles that the nuclear lamina plays in nuclear organization, (ii) exploring disruption of nuclear organization as a possible cellular mechanism of aging, and (iii) determining how nuclear organization is maintained (or alternatively, remodeled) over time.

 

 

 


Vasanth Vedantham, M.D.

Research Interests: Development and function of the cardiac conduction system; molecular regulation of cardiac pacemaker cells; mechanisms of cardiac arrhythmias

 

Our lab is focused on cardiac pacemaker cells, specialized cardiomyocytes whose autonomous electrical activity allows the sinoatrial node to serve as the heart’s natural pacemaker. Specific questions include: How are pacemaker cells different from regular heart cells at the level of gene expression and regulation? How does their unique gene expression signature confer their distinctive electrophysiological properties? How have selection pressures generated functional differences in pacemaker cells among different vertebrate species? What are the molecular mechanisms that guide pacemaker cells to integrate electrically with the rest of the heart to form a node? How do pacemaker cell biology and function change in response to physiological and pathological stress? What is the mechanistic link between sinus node dysfunction and atrial fibrillation? Our approaches include mouse genetics, whole-animal and ex-vivo electrophysiology, cellular and molecular electrophysiology, gene expression analysis, and bioinformatics. Ultimately, we hope to design novel treatments for patients suffering from heart rhythm disorders, including sinus node dysfunction and atrial fibrillation

UCSF Profiles Page: 


Roshanak Irannejad, Ph.D.

irannejad

Research Interests: Internal membrane compartments as hubs of signaling

To function properly, cells and tissue must receive and interpret a large variety of signals. They do so, in part, through signaling receptors, some of which reside on cell surfaces known as plasma membranes. We study adrenergic receptors, which are targets of commonly used medicines including alpha and beta blockers. By developing a new class of sensors that allow for detection and visualization of signaling events in living cells, we made the unexpected finding that signaling cues to cells not only act on cell surface receptors but also on internal cellular compartments. This observation raises numerous questions pertaining to fundamental aspects of cell signaling and suggests that cells have spatially compartmentalized signaling hubs. This basic biological insight has clinical implications as well. For example, certain beta-blockers are known to have differential clinical efficacies but the underlying reasons for these differences are not known. We have found that different beta blockers act on distinct hubs of signaling. Beyond their well-established roles in cardiac physiology, adrenergic receptors regulate a wide variety of important physiologically and behavioral processes. We are using our newly developed tools to investigate the consequences of signaling from internal compartments on a range of cellular, physiological, and behavioral outcomes.

UCSF Profiles Page: http://profiles.ucsf.edu/roshanak.irannejad

 

 


Ian Bass Seiple, Ph.D.

 

Seiple

Research Interests:

Synthesis of biologically active small molecules

Summary:

Despite centuries of innovation, chemistry is often still the limiting factor in the development of small molecule drug candidates, molecular probes, or novel chemical libraries. Many molecules that have tremendous biological potential are challenging to modify with known chemical methodologies. The overarching goal of our program is to develop practical methods for the synthesis of molecules that have previously been inaccessible. Many of our current projects are focused on the synthesis of novel antibiotics that can be used to treat life-threatening infections of the heart, lungs, and upper respiratory tract.

UCSF Profiles Page


Orion D Weiner, Ph.D.

Weiner

Research Interests:
Cell polarity, chemotaxis, actin cytoskeleton, cell signaling, cell migration, microscopy, biochemistry, neutrophils, systems biology, self-organization, inflammation, Rac, PI3Kinase, WAVE complex.

Summary:
Proper movement in response to cues from the outside world is as important for single cells as it is for drivers on a busy highway. If cues are misinterpreted or the movement goes awry, terrible accidents ensue, the delicate wiring of the nervous system fails, single-celled organisms can`t hunt or mate, the immune system ceases to function properly, and cancer cells spread from one part of the body to another. How do single cells, without the benefit of a brain, interpret the subtle micro-world of attractants and repellents to decide where to go? Our research focuses on dissecting the inner workings of the cellular “compass” used to guide cells on their journey. Because the core of the compass has been conserved over more than a billion years of evolution, we have been able to combine discoveries from yeast to humans to glimpse some rough outlines of the underlying machinery. However, many of the important connections are still missing. Our research focuses on identifying these key missing components and how they are wired together to process information with the hope that we can eventually make cells move when (and where) we want them to and stop them when we don’t.

UCSF Profiles Page


Lei Wang, Ph.D.

wangL

Research Interests:
Design and encode novel amino acids to study biological processes and to develop new biotherapeutics.

Summary:
We build proteins in living cells using new amino acids. By harnessing the novel properties of these new building blocks, we probe biological processes in their natural settings and engineer unique biomolecules to understand mechanisms of cellular function and to develop new treatments of diseases.

UCSF Profiles Page


Biao Wang, Ph.D.

WangB

Research Interests:
Obesity, diabetes, hormones, cAMP, kinase, signaling transduction, transcriptional regulation

Summary:
Type II diabetes mellitus accounts for 90-95% of all cases of diabetes, and this heterogeneous disorder afflicts an estimated 6% of the adult population in Western society. Energy imbalance by high calorie intake and/or lack of physical activity can lead to obesity, which is often associated with an increased risk of developing insulin resistance followed by type II diabetes. Our research is focused on understanding how circulating hormones modulate energy balance in multiple metabolic tissues, and how disruption of these hormonal actions contributes to pathophysiology of type II diabetes.

UCSF Profiles Page


Xiaokun Shu, Ph.D.

Shu

Research Interests:
Protein Rational Design and Directed Evolution for Biology and Medicine

Summary:
We are developing technologies to bridge the gap between clinical medicine and molecular biology. Their successful use in biomedicine will significantly improve treatment of disease.

UCSF Profiles Page


Dean Sheppard, M.D.

Sheppard

Research Interests:
In vivo function of integrins and molecular basis of lung diseases

Summary:
Dean Sheppard’s laboratory studies how cells respond to and modify their surroundings using receptors called integrins. They have found important roles for integrins in lung and kidney fibrosis, septic shock, acute lung injury, asthma and stroke and are testing drugs targeting integrins in animal models and in people affected by these diseases.

UCSF Profiles Page